Package: BarBorGradient (via r-universe)

July 18, 2024

Type Package
Title Function Minimum Approximator
Version 1.0.5
Date 2017-04-18
Author János Hevner
Maintainer János Hevner hevnerjanos@hotmail.com
Description Tool to find where a function has its lowest
value(minimum). The functions can be any dimensions.
Recommended use is with eps $=10^{\wedge}-10$, but can be run with $10^{\wedge}-20$, although this depends on the function. Two more methods are in this package, simple gradient method (Gradmod) and Powell method (Powell). These are not recommended for use, their purpose are purely for comparison.
License GPL-3
Depends R (>= 3.0.0)
Imports stats
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Date/Publication 2017-04-24 12:19:44 UTC
Repository https://alterion.r-universe.dev
RemoteUrl https://github.com/cran/BarBorGradient
RemoteRef HEAD
RemoteSha b18da586ae78287063dd31beb1db6e4bdd9583b8

Contents

BarBor 2
BarBorNoPrint 2
Gradient Method 3
Powell 4

Description

Approximate a functions minimum with double monoton method.

Usage

BarBor (exp,eps, x,v,n)

Arguments

$\exp \quad$ Expression of the function to be minimized.
eps Precision of the approximation, recommended value is $10^{\wedge}-10$.
$x \quad$ Starting point of the approximation.
$v \quad$ A character vector of the functions variables, for instance the two dimension fuction $\mathrm{x} 1 * \mathrm{x} 1+10 * \mathrm{x} 2 * \mathrm{x} 2$ needs a $\mathrm{c}($ " x 1 "," x 2 ") vector.
n
Maximum setps to make while approximating, if the calculation reaches this number it exits with the current value and point. Recommended to be 10000.

Examples

```
test1 = expression(x1*x1+10*x2*x2)
eps = 10^-15
x = c(3,4)
v = c("x1","x2")
n = 10000
BarBor(test1,eps,x,v,n)
```

BarBorNoPrint

The BarBor funtcion without printing.

Description

Same approximation method as the BarBor function, but this doesn't print out anything. Its recommended use is for timing the approximation.

Usage

BarBorNoPrint (exp,eps,x,v,n)

Arguments

$\exp \quad$ Expression of the function to be minimized.
eps \quad Precision of the approximation, recommended value is $10^{\wedge}-10$.
$x \quad$ Starting point of the approximation.
$v \quad$ A character vector of the functions variables, for instance the two dimension fuction $\mathrm{x} 1 * \mathrm{x} 1+10 * \mathrm{x} 2 * \mathrm{x} 2$ needs a $\mathrm{c}(\mathrm{"x} 1$ ","x2") vector.
n
Maximum setps to make while approximating, if the calculation reaches this number it exits with the current value and point. Recommended to be 10000.

Examples

```
test1 = expression(x1*x1+10*x2*x2)
eps = 10^-15
x = c(3,4)
v = c("x1","x2")
n = 10000
BarBorNoPrint(test1,eps,x,v,n)
```


Description

Gradient method for approximating a functions minimum value. The purpose of this method is to compare its result with the BarBor method.

Usage

Gradmod(exp,eps, G, B, m, x, v, n)

Arguments

$\exp \quad$ Expression of the function to be minimized.
eps Precision of the approximation, recommended value is $10^{\wedge}-10$.
G
Inner approximation coefficient, recommended value is $10^{\wedge}-2$.
B
Inner approximation coefficient, recommended value is 0.5 .
$\mathrm{m} \quad$ Inner steps, recommended value is 20.
$x \quad$ Starting point of the approximation.
v A character vector of the functions variables. Exmaple: the two dimension fuction $\mathrm{x} 1 * \mathrm{x} 1+10 * \mathrm{x} 2 * \mathrm{x} 2$ needs a $\mathrm{c}($ "x1","x2") vector.
n
Maximum setps to make while approximating, if the calculation reaches this number it exits with the current value and point. Recommended to be 10000.

Examples

```
test1 = expression(x1*x 1 +10*x2*x2)
eps = 10^-10
G = 10^-2
B = 0.5
m = 20
x = c(3,4)
v = c("x1","x2")
n = 10000
Gradmod(test1,eps,G,B,m,x,v,n)
```


Description

Powell's method for finding a function local minimum. The function need not be differentiable, and no derivatives are taken. The function must be a real-valued function of a fixed number of real-valued inputs.

Usage

```
Powell(exp,eps,G,eta,m,k,x,v,n)
```


Arguments

$\exp \quad$ Expression of the function to be minimized.
eps Precision of the approximation, recommended value is $10^{\wedge}-10$.
G Inner approximation coefficient, recommended value is $10^{\wedge}-2$.
eta Inner approximation coefficient, recommended value is $\mathrm{G}^{*} 2$.
m Inner steps, recommended value is 20.
k Second inner approximation steps, recommended value is 20.
$x \quad$ Starting point of the approximation.
$v \quad$ A character vector of the functions variables. Exmaple: the two dimension fuction $\mathrm{x} 1 * \mathrm{x} 1+10 * \mathrm{x} 2 * \mathrm{x} 2$ needs a $\mathrm{c}($ " x 1 "," x 2 ") vector.
$\mathrm{n} \quad$ Maximum setps to make while approximating, if the calculation reaches this number it exits with the current value and point. Recommended to be 10000.

Examples

```
test1 = expression(100*(x1*x1-x2)*(x1*x1-x2)+(1-x1)*(1-x1))
eps = 10^-5
G = 10^-2
eta = G *2
m = 20
k = 20
```

```
n = 10000
max = 1000
x = c(1,1)
v = c("x1","x2")
Powell(test1,eps,G,eta,m,k,x,v,n)
```


Index

BarBor, 2
BarBorNoPrint, 2
Gradient Method, 3
Gradmod (Gradient Method), 3

Powell, 4

